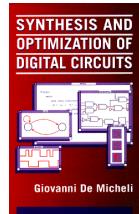


Elements of Physical Design

Giovanni De Micheli
Integrated Systems Laboratory

with credits to P. Gruenwald



This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

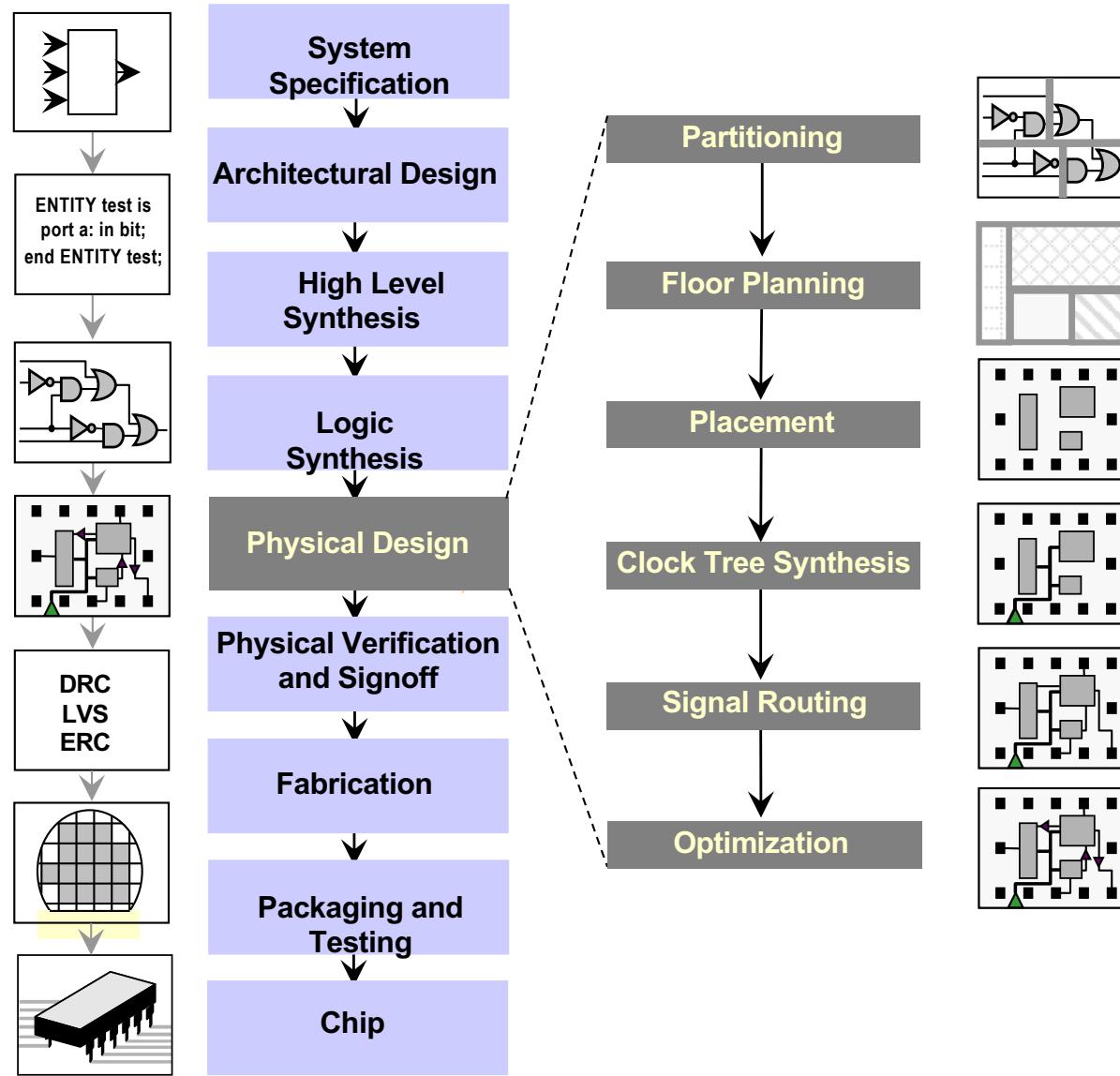
© Giovanni De Micheli – All rights reserved

Module 1

◆ Objectives

- ▲ Physical design
- ▲ Basic and new rules in layout

Big Picture: Physical Design in the Flow



Major Physical Design Algorithmic Problems

◆ Partitioning:

- ▲ Divide the problem into sub-parts
 - ▼ such that the number of pins in between and other costs are minimized

◆ Floor planning:

- ▲ Shape and place large non-overlapping modules
 - ▼ such that total area and wire length are minimized

◆ Placement:

- ▲ Assign non-overlapping locations to gates
 - ▼ such that total wire length is minimized

◆ Routing:

- ▲ Generate correct non-overlapping wires according to net list connectivity
 - ▼ such that total wire length and other 'costs' are minimized

Objectives & Constraints

What are we Optimizing for?

- ◆ Low Unit Cost implies smallest die area
 - ▲ No unused space
 - ▲ Small total gate area
 - ▲ Avoid local congested areas
- ◆ Maximum performance
 - ▲ Parallel execution (costs area)
 - ▲ Reduce logic depth (often costs area)
 - ▲ Reduce wire length (byproduct of small area)
 - ▲ Higher frequency (costs power)
- ◆ Power
 - ▲ Reduce wire length & area
 - ▲ Low leakage cells (costs performance and/or area)
 - ▲ Voltage regions (makes for a more complex floorplan)

Constraints vs Objectives

◆ Constraints:

- ▲ Logically correct
- ▲ DRC-correct (no shorts and opens)
- ▲ LVS correct (layout versus schematic)
- ▲ Frequency = speed

Must-have

◆ Objectives:

- ▲ Power
- ▲ Area
- ▲ Performance

Nice to have

Module 2

◆ Objectives

▲ Algorithms for physical design

▲ Routing algorithms

▼ Area routers

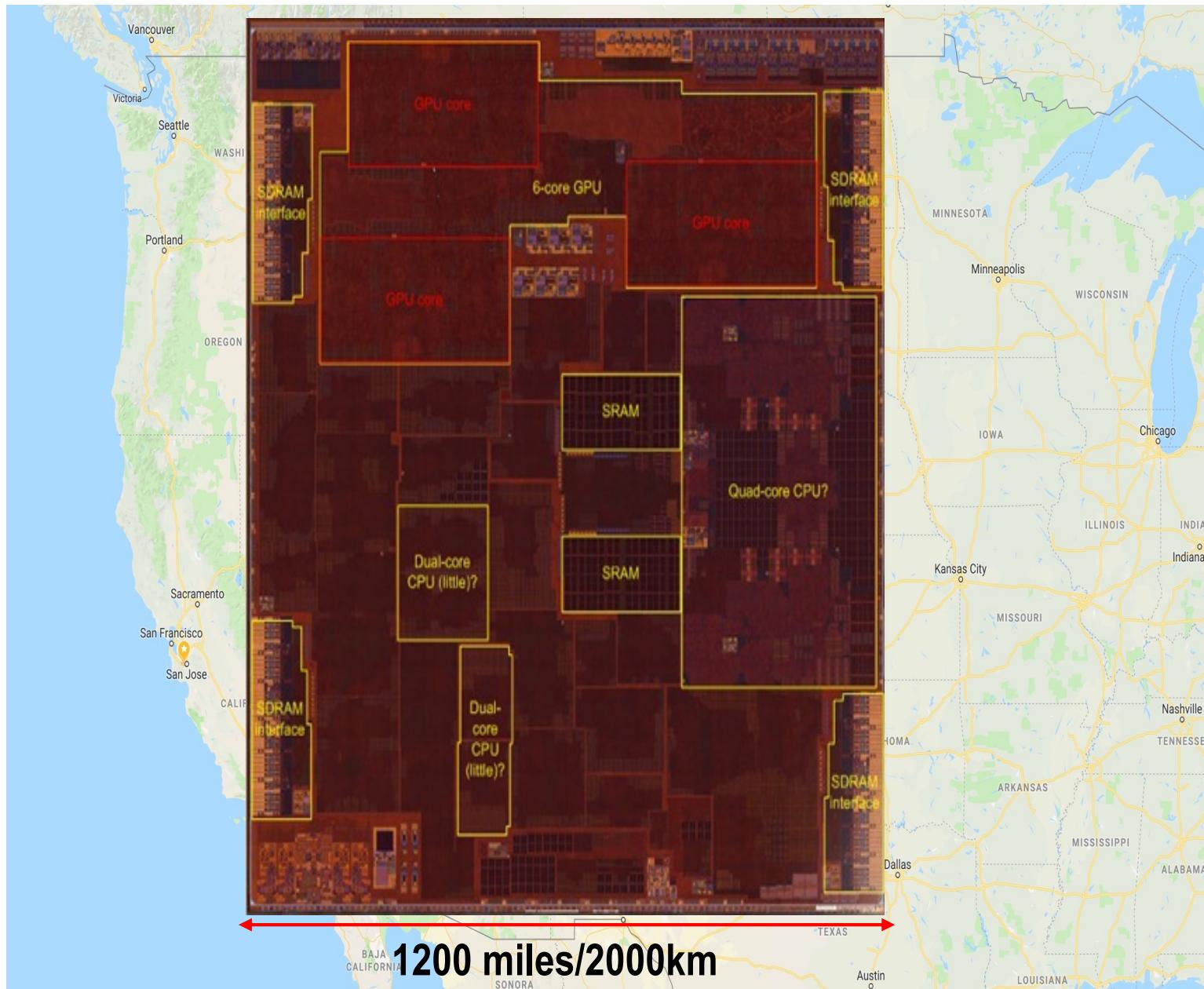
▼ Channel routers

▲ Placement algorithms

▼ Constructive

▼ Iterative

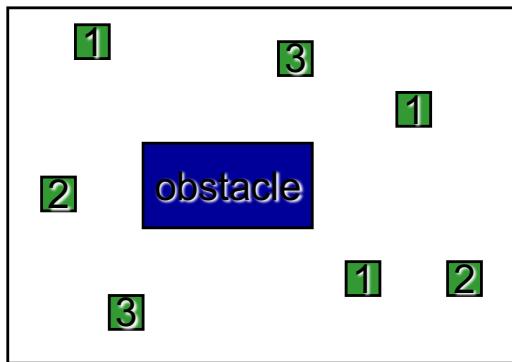
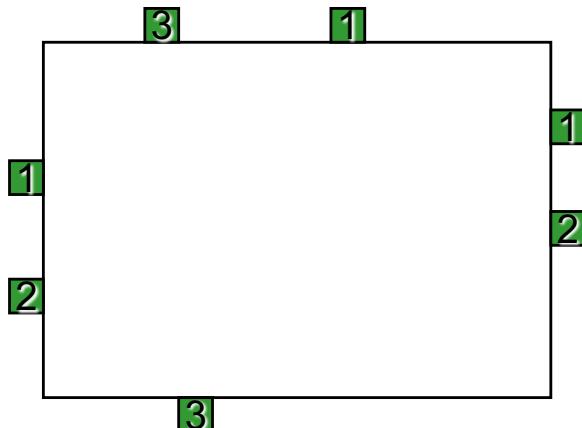
If the Wires on a 10nm Mobile SoC were as Wide as Roads...



A chip contains
~10 million km
wires in 10 layers.
Connecting
4.4 Billion transistors
in 0.2 Billion cells

The USA contains
~4.3 million km
paved roads in 1 layer.
Connecting
0.3 Billion people
in 0.14 Billion homes

Maze routing



◆ Given:

- ▲ An area model
- ▲ Net list with pins
- ▲ Design rules

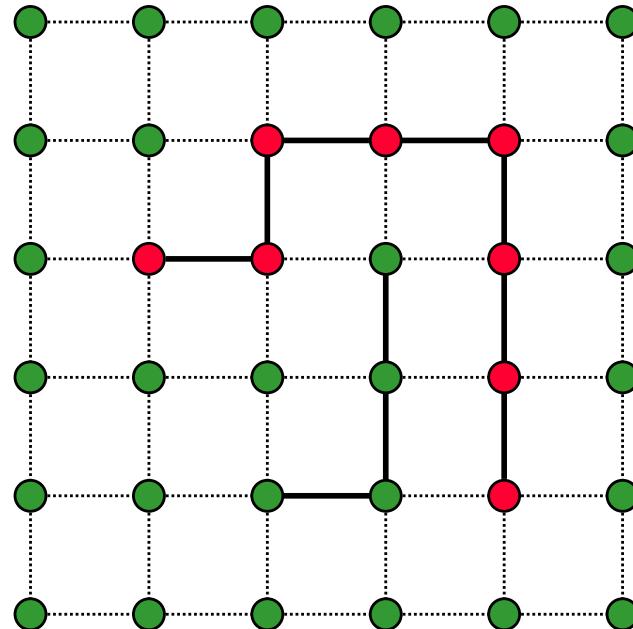
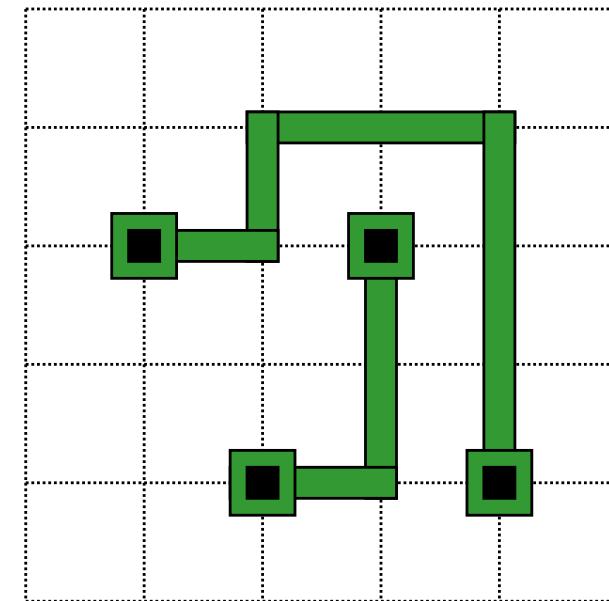
◆ Constraints:

- ▲ Connect all nets
- ▲ Design rule correct

◆ Optimization criteria:

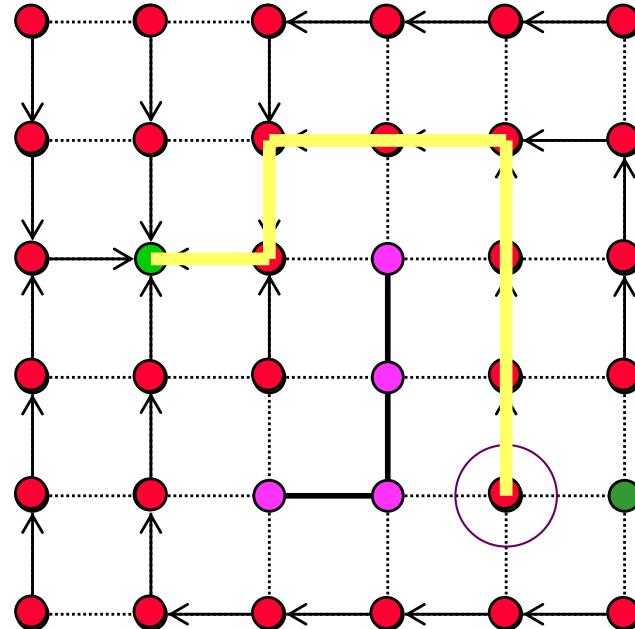
- ▲ Minimize total wire length
- ▲ Follow directives
- ▲ Minimize vias

Grid graph as framework



The proper choice of the spacing ensures DRC

Dijkstra's algorithm



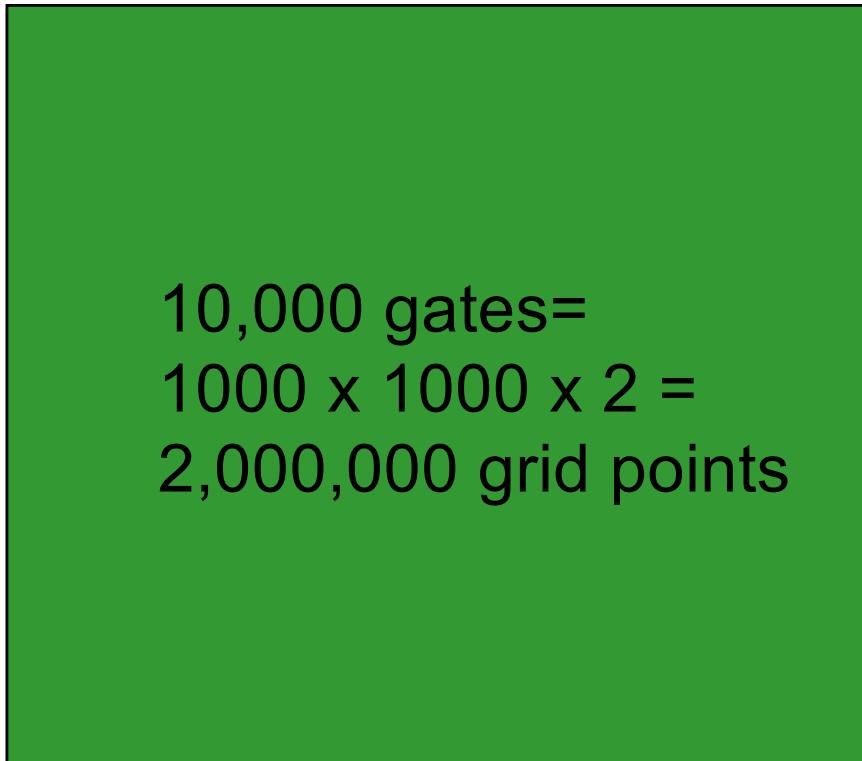
- ◆ Guarantees to find shortest path, if it exists.
- ◆ Quadratic behavior: Slow, especially in ‘sparse’ designs.
- ◆ Modeling on grid has limitations.

Lee-style maze router

In the early 60s, Lee published a router based on *Dijkstra* 's *shortest path* algorithm. The algorithm is run sequentially for each net.

- ◆ No guarantee for routing solution, even it one exists
 - ▲ Each net is routed independently of all others
- ◆ Decent operation requires hacking and tuning
- ◆ Too expensive for large circuits
- ◆ Suggested improvements:
 - ▲ Speed-up: partitioning
 - ▲ Rip-up-and-reroute
 - ▲ Spreading congestion by global routing

Taming quadratic behaviour



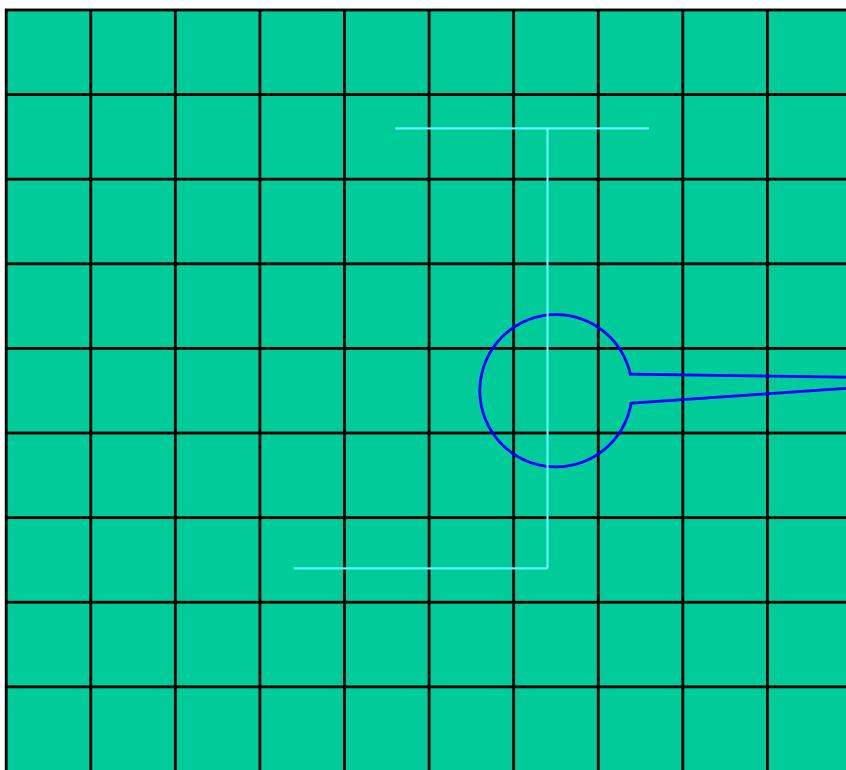
10,000 gates=
 $1000 \times 1000 \times 2 =$
2,000,000 grid points

100 gates=
1000 grid

Solution: “Global routing”

Bring hierarchy in the routing problem:

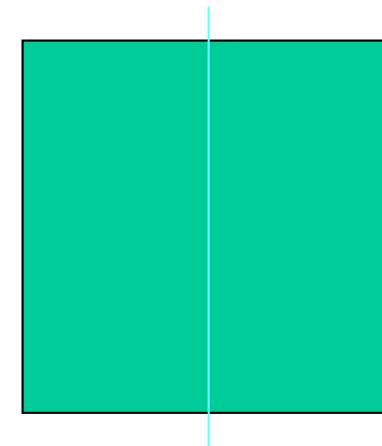
- 1) Global route on coarse grid
- 2) Detailed route on fine grid



(c) Giovanni De Micheli

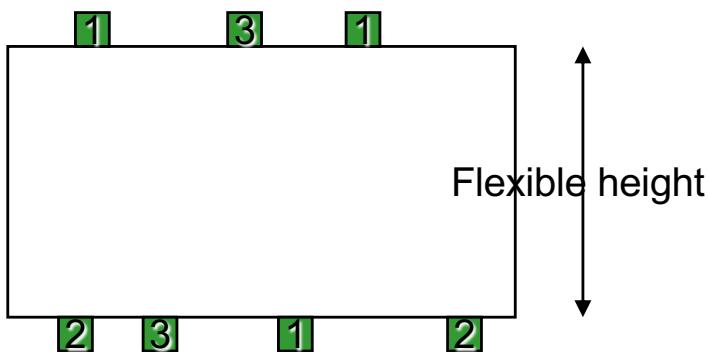
Task of a global router:

Find coarse path and layer assignment for each net, such that: wire density is spread evenly



Gcell

Channel routing



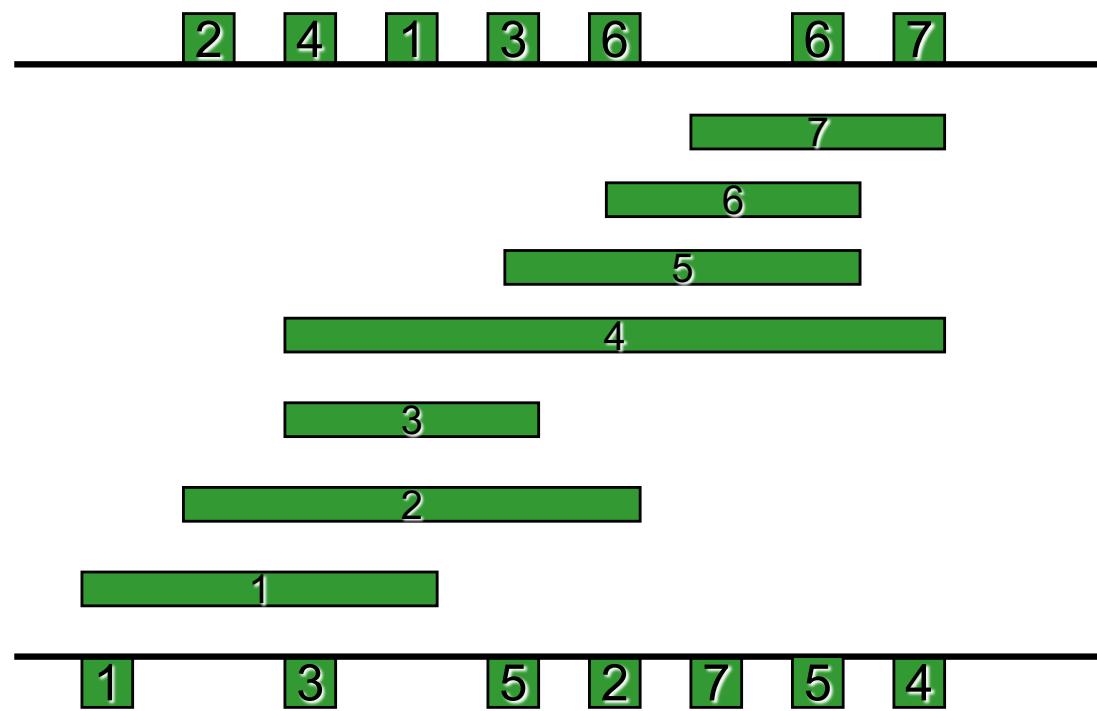
Guaranteed

To fulfill constraints!

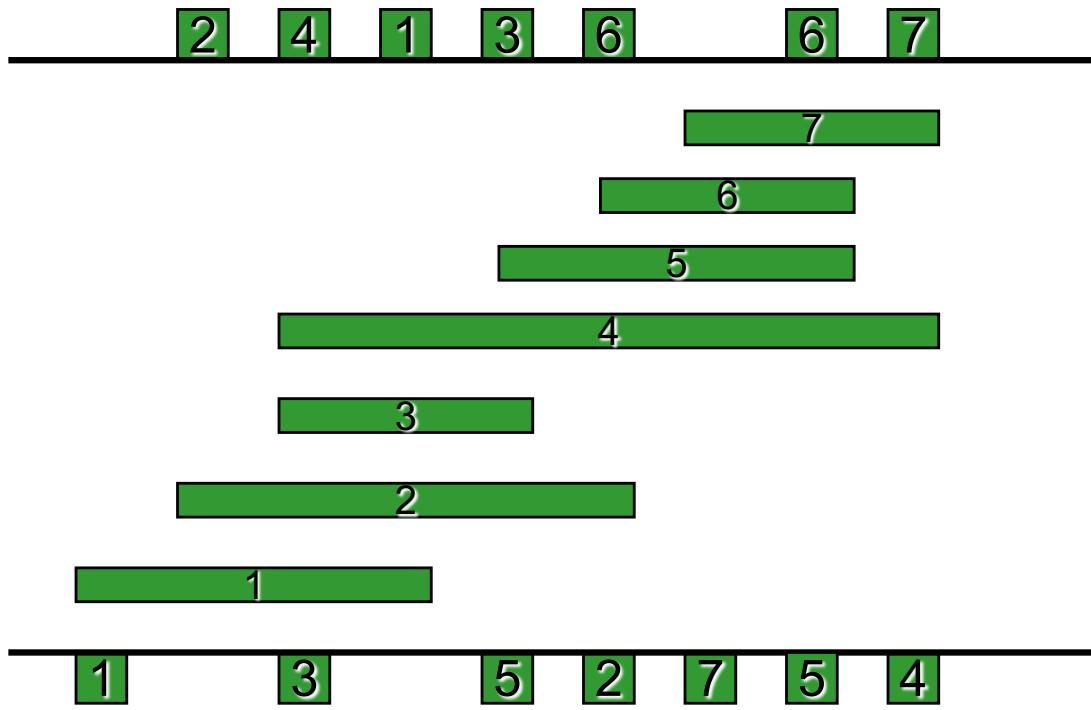
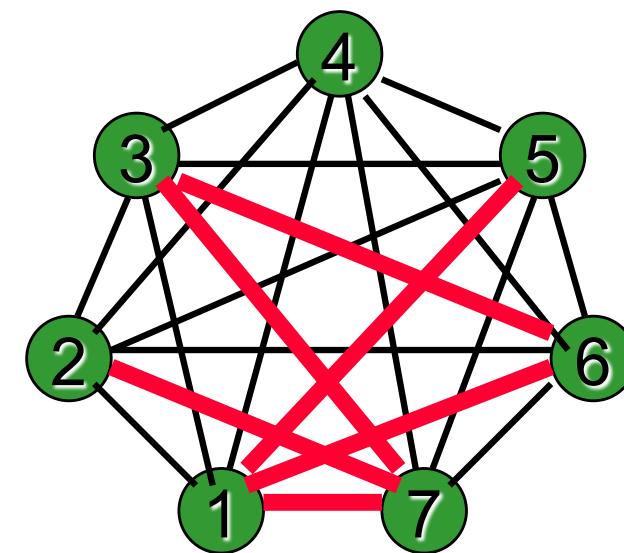
- ◆ Given:
 - ▲ An area model (flexible)
 - ▲ Net list with pins
 - ▲ Design rules
- ◆ Constraints:
 - ▲ Connect all nets
 - ▲ Design rule correct
- ◆ Optimization criteria:
 - ▲ Minimize channel height
 - ▲ Minimize vias
 - ▲ Minimize wire length

Reduce search space:

- Implement each net by a single horizontal wire (trunk)
- Connect pins to wire by vertical branches
- ‘Tetris’ -style compaction: share the rows
- The trunk spans the entire net:

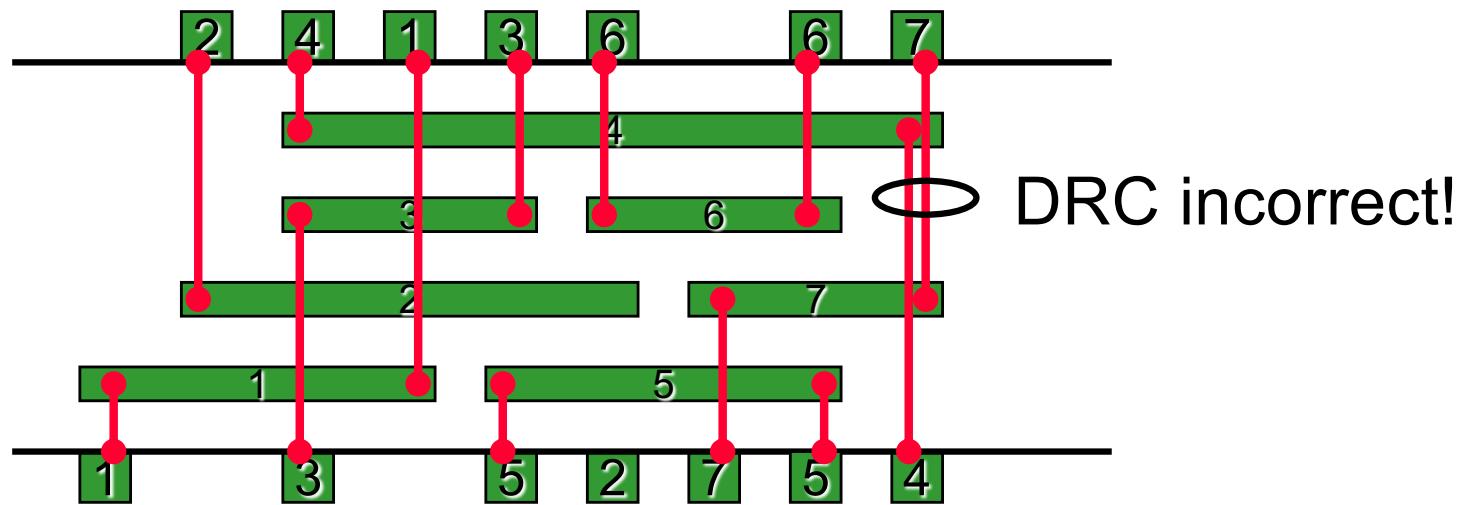


Horizontal Constraint Graph



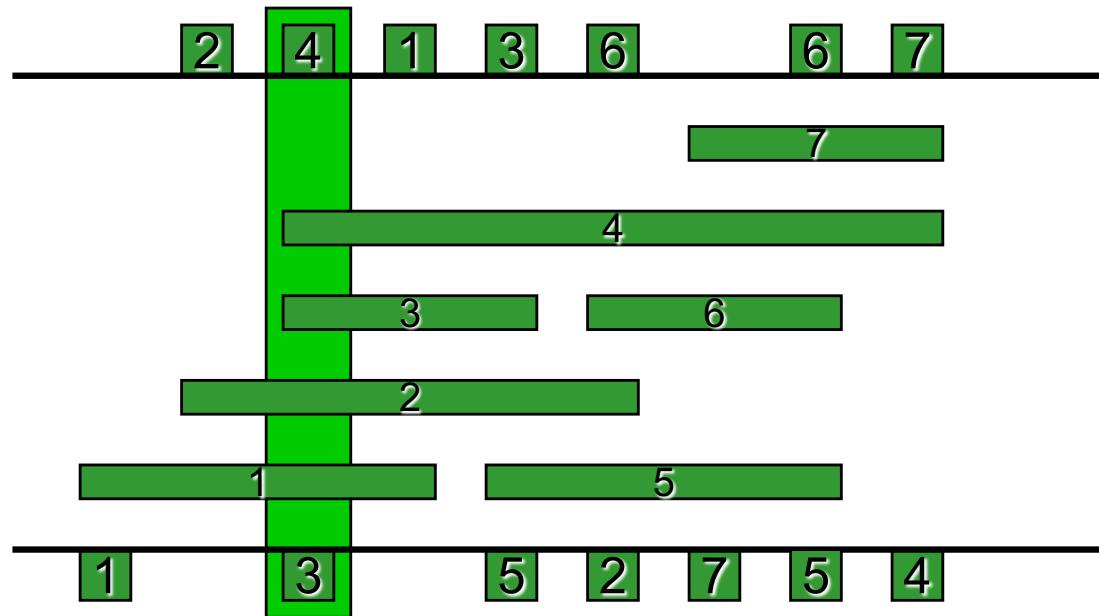
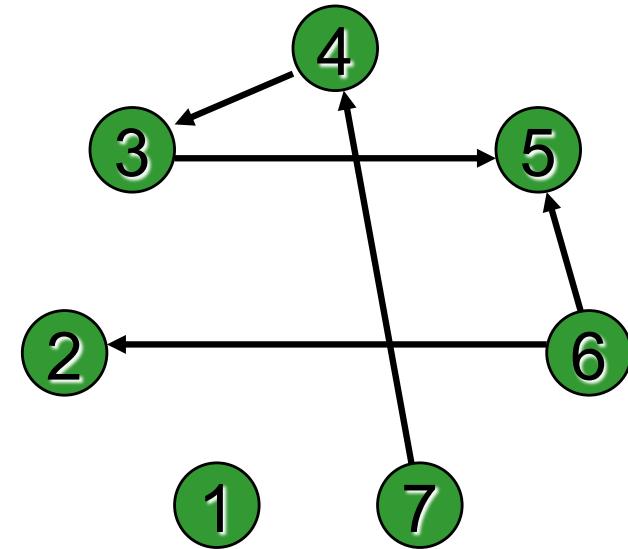
The complement of the horizontal constraint graph contains segments which can be teamed into one track

‘Left edge’ algorithm



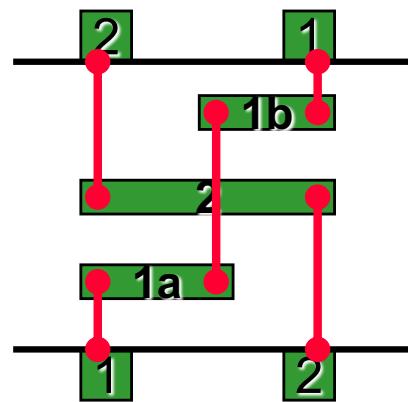
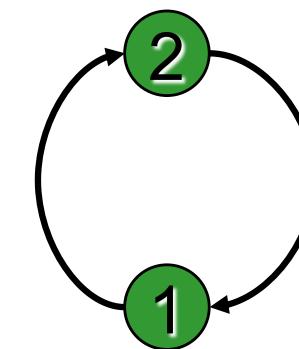
Channel Density = 4

Vertical Constraints

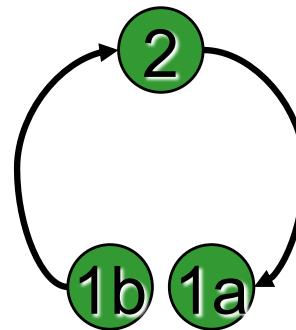


Channel needs to satisfy both horizontal and vertical constraints!

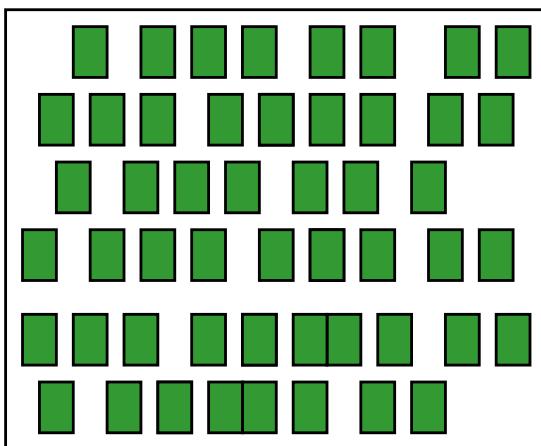
Cycles in the VC Graph



Insert a 'dogleg'



Placement



- ◆ Given:
 - ▲ An area model
 - ▲ Net list with cells
 - ▲ Cell geometries
- ◆ Constraints:
 - ▲ Cells may not overlap
- ◆ Optimization criteria:
 - ▲ Minimize area
 - ▲ Minimize total wire length

Placement algorithms

- ◆ **Constructive methods**

- ▲ **Quadratic placement**

- ◆ **Basic model**

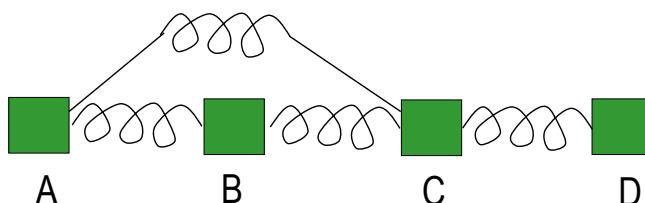
- ▲ **Abstract modules as points**
 - ▲ **Abstract connectivity as attractive force**
 - ▲ **Use pinout constraints to find a balanced solution**

- ◆ **Mechanical analogy**

- ▲ **Find minimum energy configuration**

Example

- ◆ 1-dimensional placement of 4 modules



$$B = \begin{bmatrix} k_1+k_4 & -k_1 & -k_4 & 0 \\ -k_1 & k_1+k_2 & -k_2 & 0 \\ -k_4 & -k_2 & k_2+k_3+k_4 & -k_3 \\ 0 & 0 & -k_3 & k_3 \end{bmatrix}$$

- ◆ C = interconnection matrix
- ◆ D = diagonal matrix $d_{ii} = \sum c_{ij}$
- ◆ $B = D - C$
- ◆ At equilibrium $Bx = 0$
- ◆ B is singular
 - ▲ Need to fix endpoints

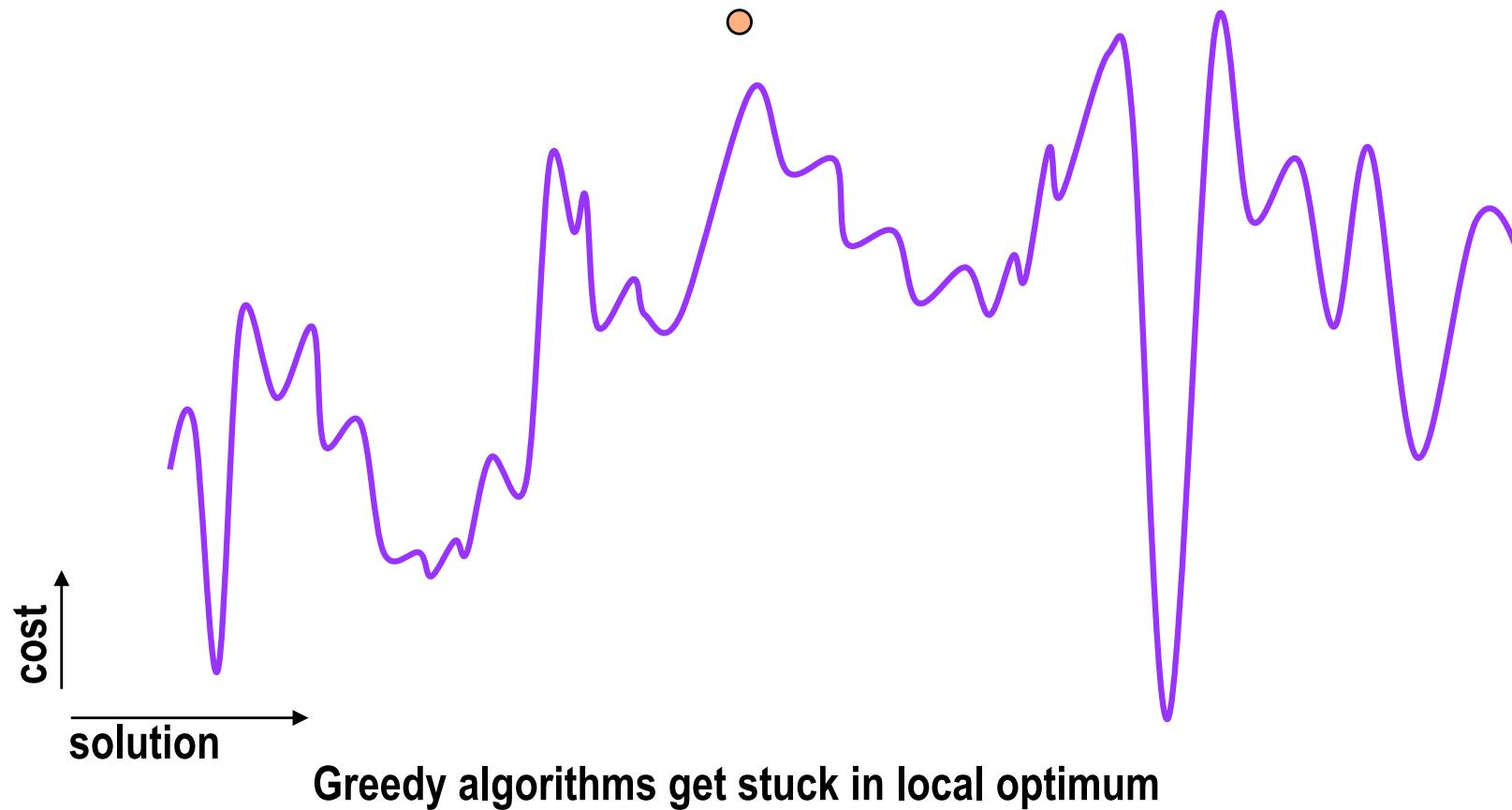
Eigenvalue methods

- ◆ Minimize energy
 - ▲ Quadratic form $\mathbf{x}^T \mathbf{B} \mathbf{x}$
 - ▲ \mathbf{B} symmetric matrix
 - ▲ Hence $\lambda_{\min} \leq \mathbf{x}^T \mathbf{B} \mathbf{x} / \mathbf{x}^T \mathbf{x} \leq \lambda_{\max}$
- ◆ Quadratic form is minimum when \mathbf{x} is the eigenvector corresponding to λ_{\min}
- ◆ For two dimensional placement
 - ▲ Compute quadratic form in \mathbf{x} and \mathbf{y}
 - ▲ Consider eigenvectors related to two smallest eigenvalue
 - ▼ To avoid to place elements on a diagonal

Iterative methods

- ◆ Start from initial placement
- ◆ While cost function decreases
 - ▲ Swap two elements or displace one element
- ◆ Cost function is overall wiring length
- ◆ Often solution is a local minimum

The Cost Landscape



Simulated annealing

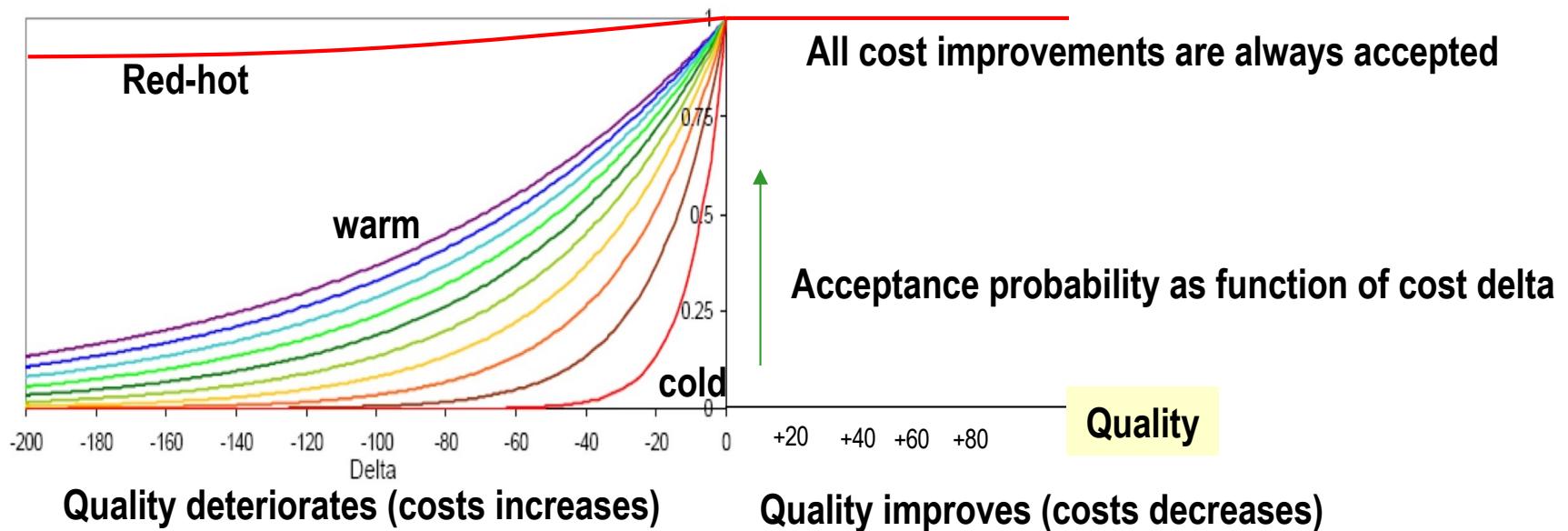
- ◆ Iterative methods with probabilistic escape from local minima
 - ▲ Allow uphill moves with a certain probability
 - ▲ Always allow downhill moves
- ◆ Drive probability of uphill moves slowly to zero
- ◆ Physical analogy
 - ▲ Annealing in metals
 - ▼ Warm up over melting point
 - ▼ Cool down slowly to allow crystal to attain minimum energy configuration
- ◆ Key factor is cooling schedule

Metropolis algorithm

- ◆ Simulation of gas at given temperature T
- ◆ Generate random displacement/interchange of particles
- ◆ Compute difference in energy
 - ▲ If difference is negative -- accept
 - ▲ If difference is positive -- accept with probability $\min(1, e^{-\Delta E/kT})$
- ◆ After a large set of moves, the simulated system is in equilibrium at T (Boltzman distribution)
- ◆ Simulated annealing is like running Metropolis algorithm with a temperature schedule
 - ▲ Key factor: cool down slowly

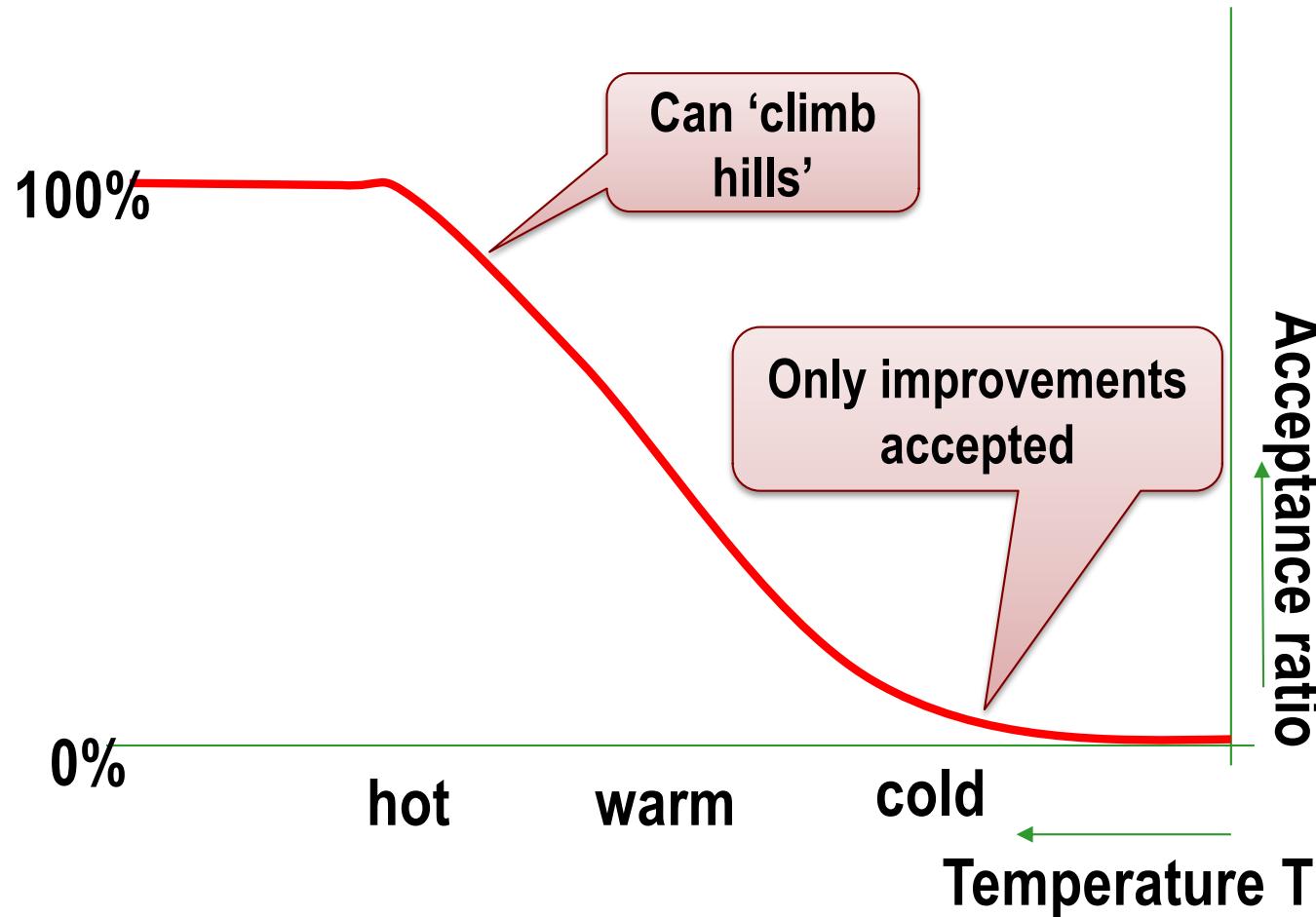
Simulated Annealing

- ◆ Base idea: slowly cool from hot to cold
- ◆ The energy state E of the system corresponds to the cost of a configuration.
- ◆ Energy (cost) increases are accepted with probability
- ◆ Energy decreases are always accepted. Very low temperature is equivalent to greedy improvement.



Kirkpatrick, S.; Gelatt Jr, C. D.; Vecchi, M. P. (1983). "Optimization by Simulated Annealing". *Science*. 220 (4598): 671–680

Simulated annealing: acceptance ratio



Simulated annealing

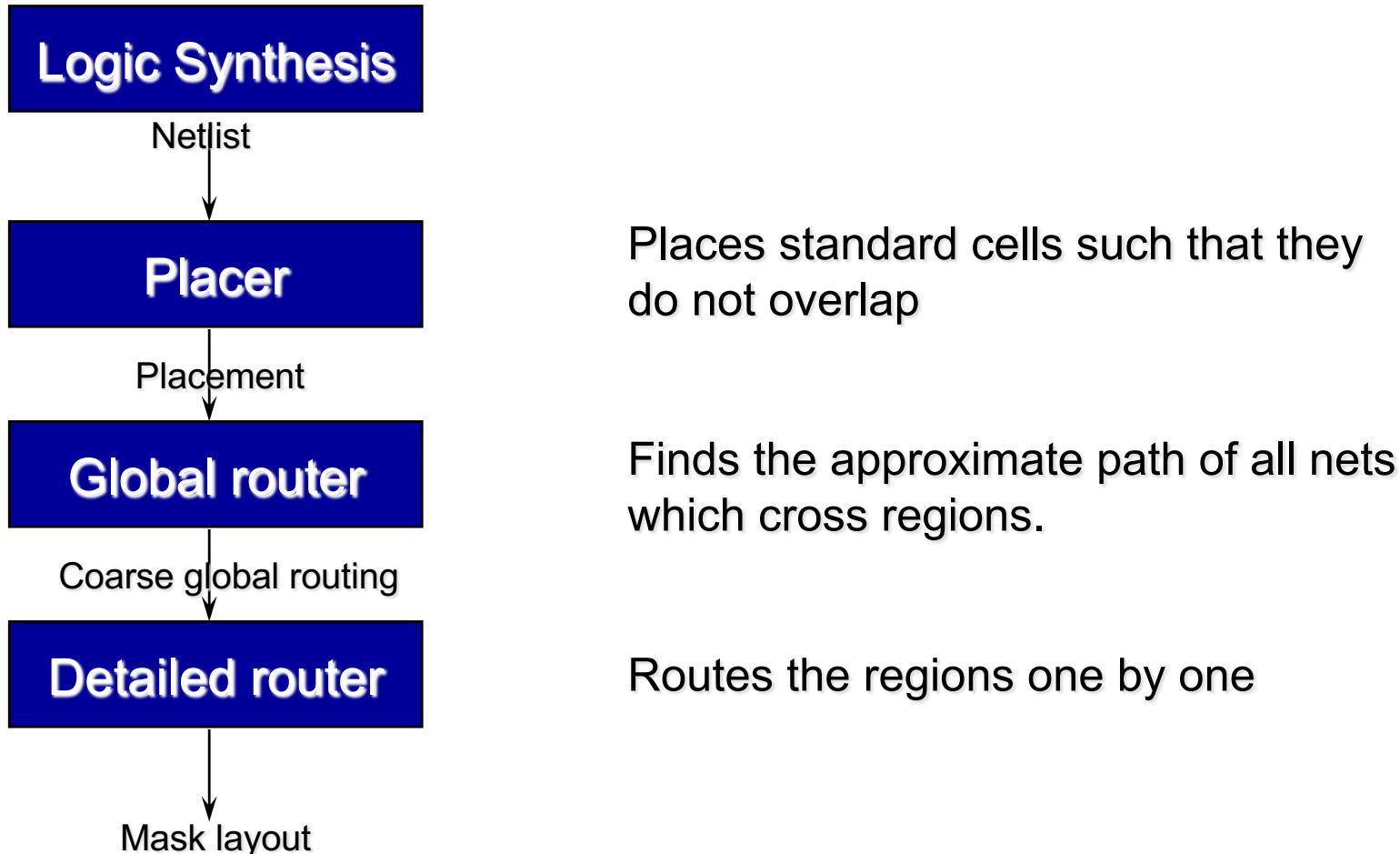
- ◆ The simulated annealing algorithm attains the global minimum if:
 - ▲ The process reaches equilibrium at each temperature
OR
 - ▲ The cooling schedule is $T_k = c / \ln (k + \alpha)$ with $\alpha > 1$ and c the max depth of local minima
- ◆ Theoretical value only:
 - ▲ An infinite number of moves are required
 - ▲ Very good heuristic algorithm
 - ▲ Highly tunable

Module 3

◆ Objectives

- ▲ Physical design flows
- ▲ Fixed timing approach
- ▲ Theory of logical effort

Vanilla flow



No completion guarantee in current technologies !!

Spoiling the fun: parasitics

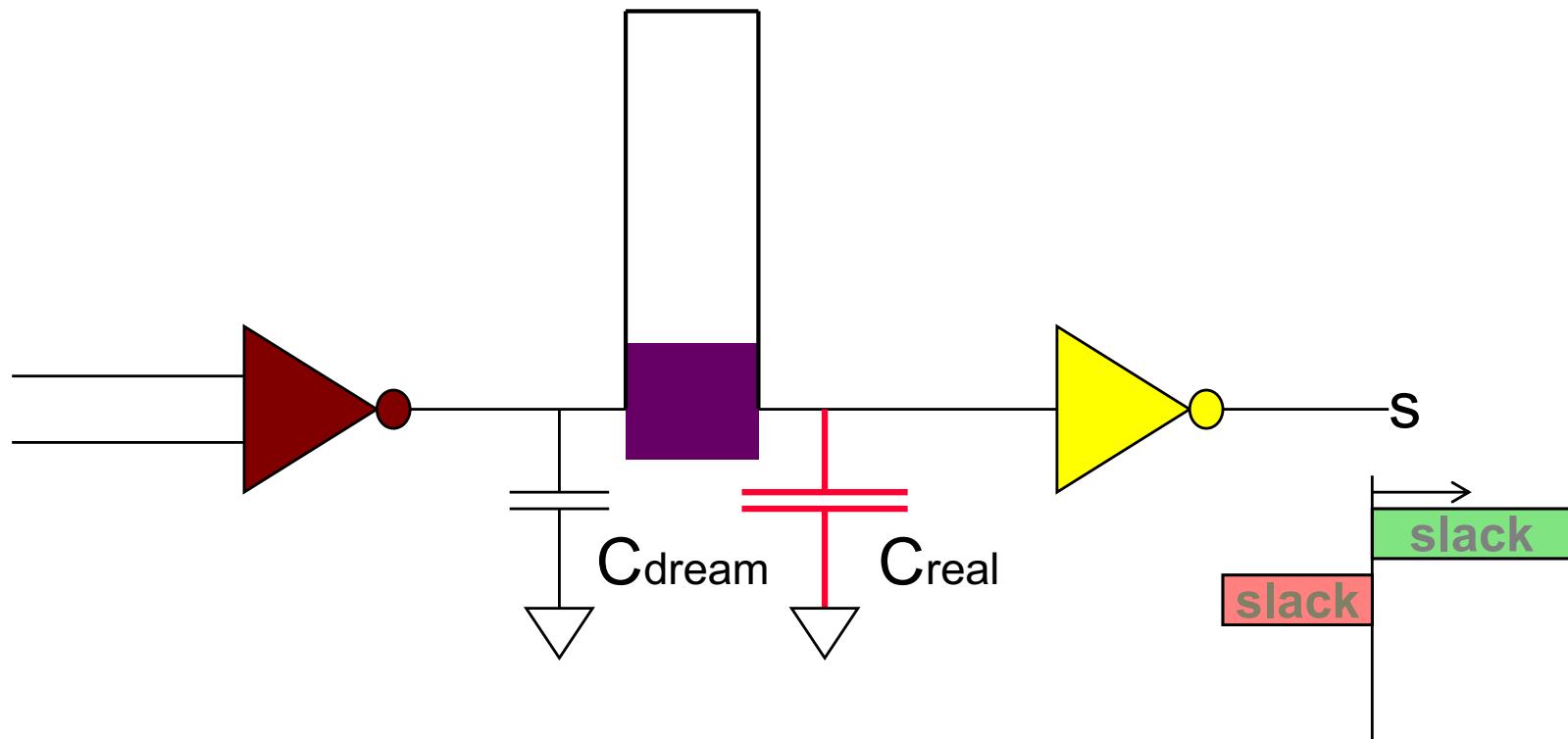
Goal: make circuit as fast as possible

- ◆ Speed is determined *entirely* by parasitic capacitances and resistances
- ◆ Parasitics are tiny and depend on the exact layout
- ◆ Parasitics are extremely hard to estimate beforehand

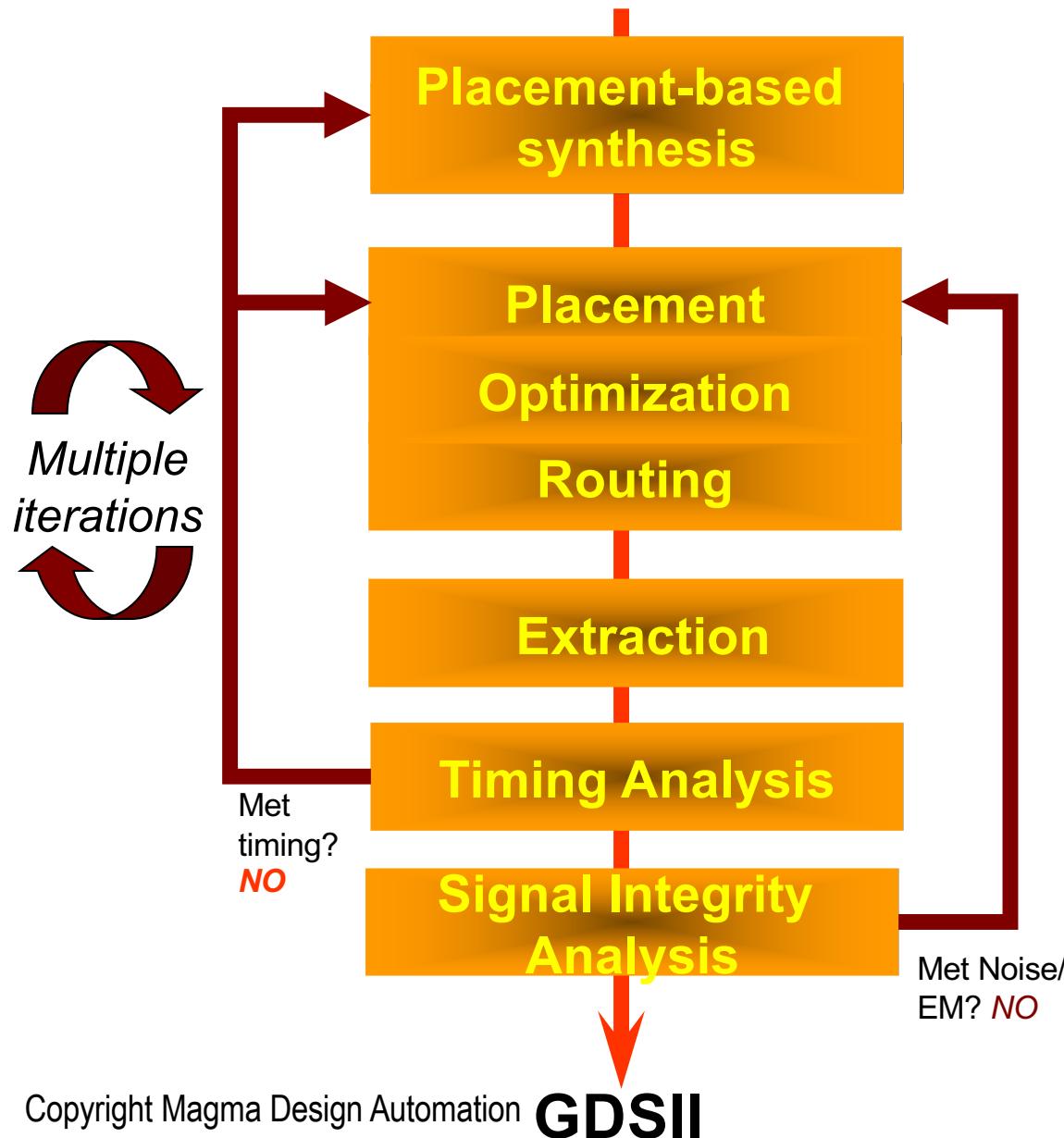
No more correct by construction

Timing is a result of the placement

- ◆ The bad news: the worst timing sets the clock speed!



Design Flows

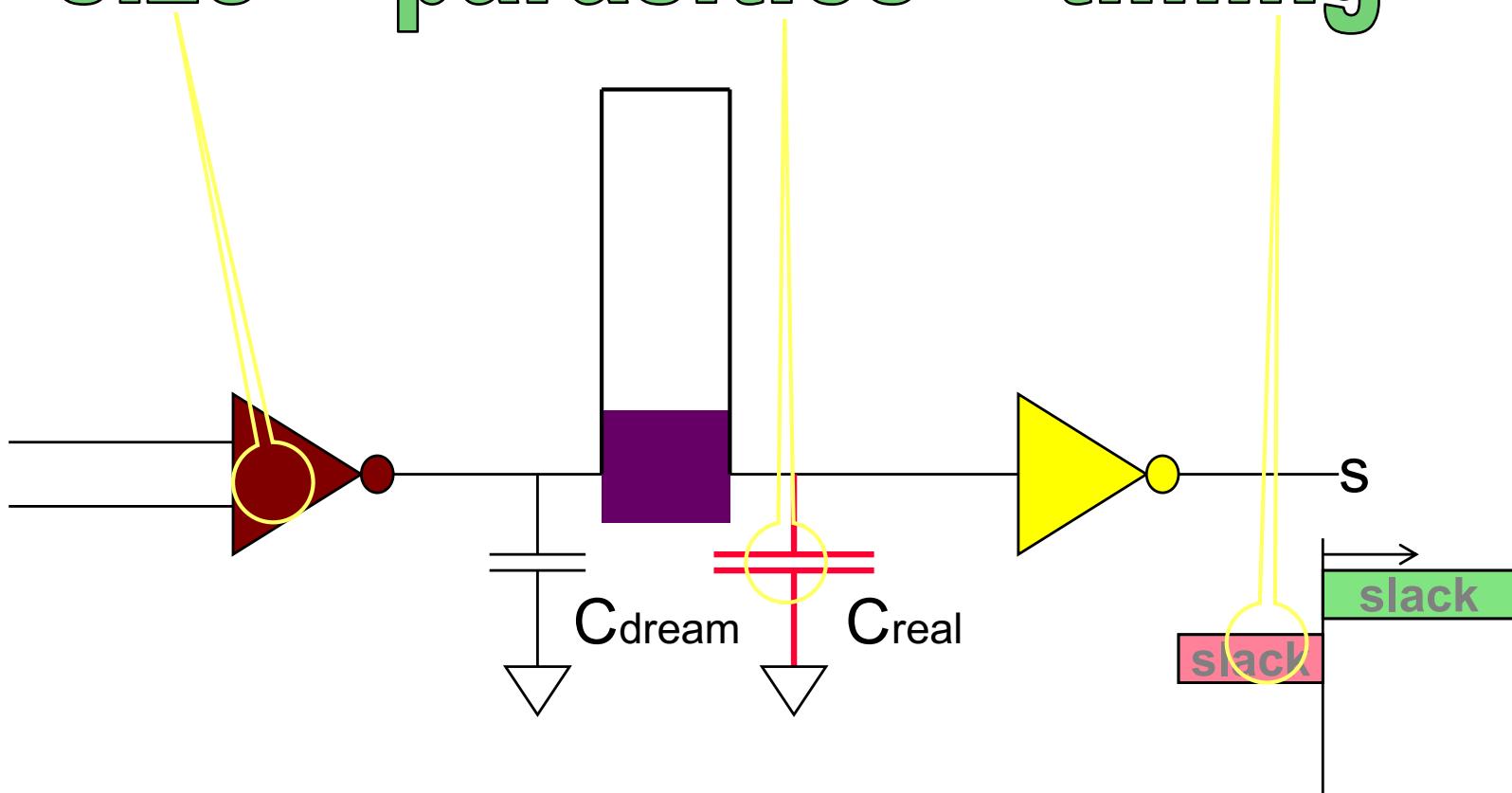


- ◆ Synthesis does not accurately model interconnect
- ◆ Cell sizes fixed before placement.
- ◆ Place & route unable to meet timing goal
- ◆ Signal integrity effects handled too late

Iterate to make ends meet!

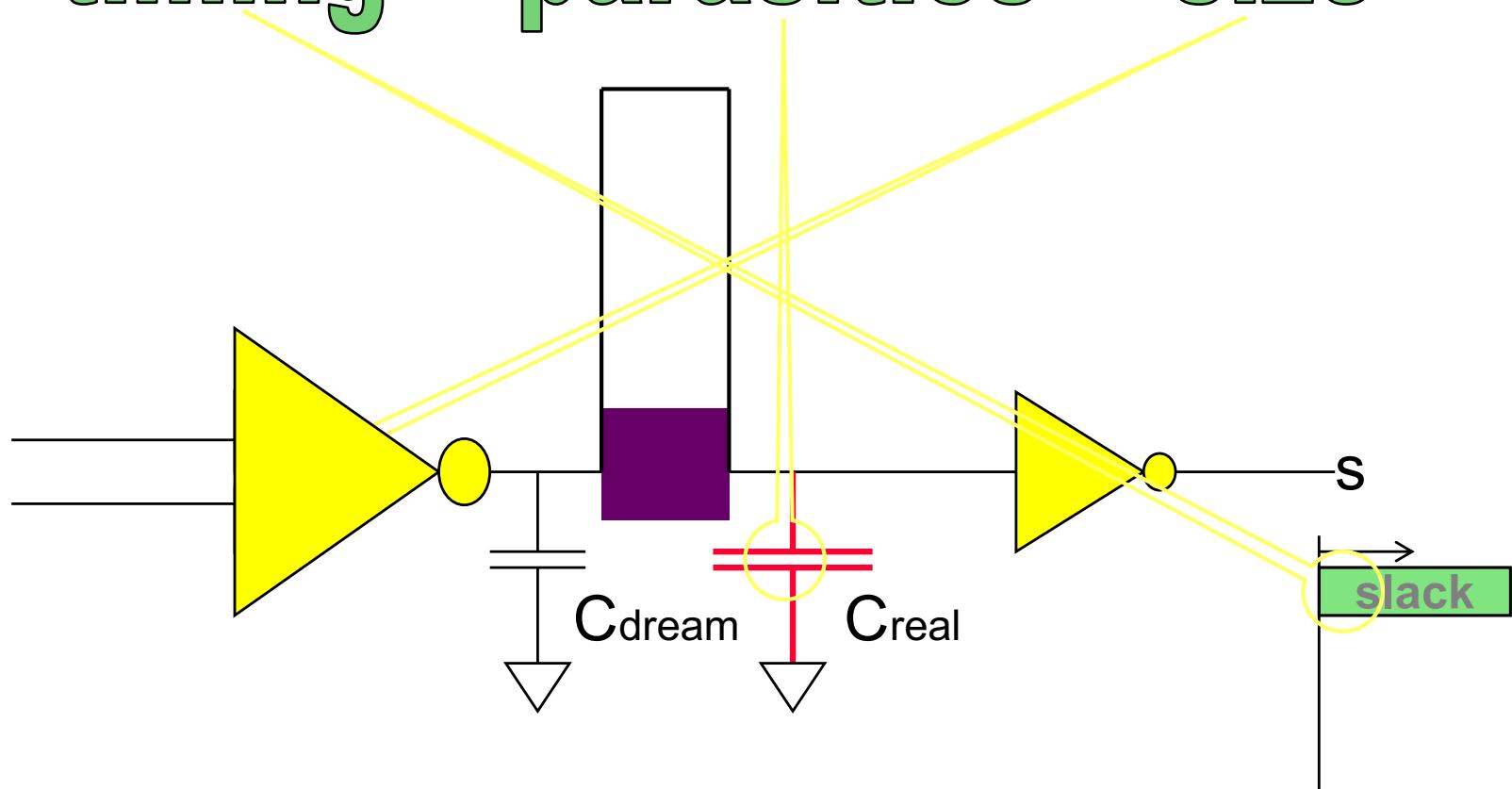
Conventional layout synthesis

size + parasitics = timing

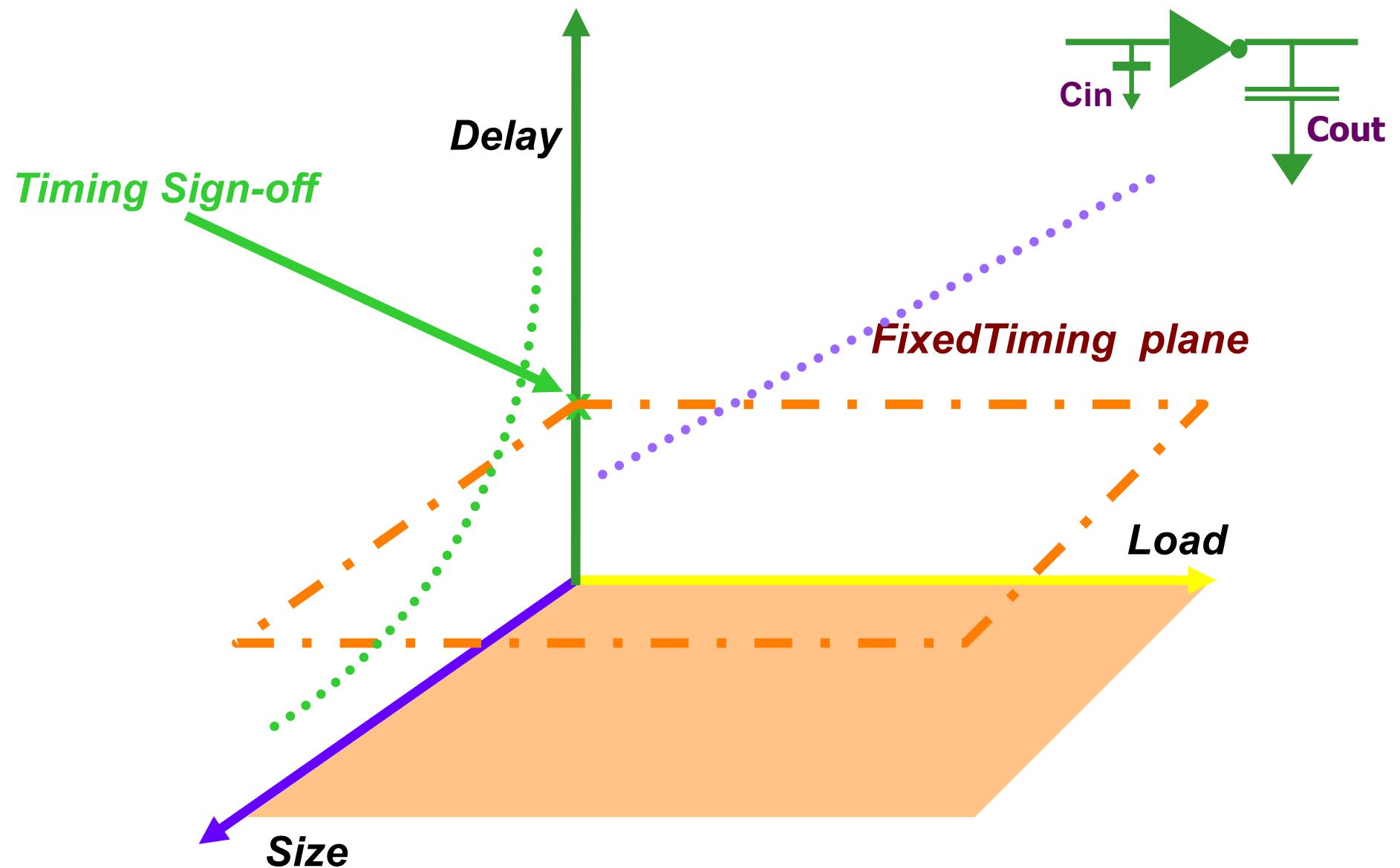


Idea: keep timing fixed

timing + parasitics = size



Delay, Load and Size



The concept in a nutshell

- ◆ Goal:
 - ▲ Correct by construction (eliminate iterations)
- ◆ Pick the delays up-front
- ◆ Keep that delay throughout placement and routing
- ◆ Keep delay constant by cell sizing and other techniques

Comparison

Fixed area versus fixed timing

- ◆ Cell Area fixed
- ◆ Delay is a gamble
- ◆ Worst case delay determines timing (max)
- ◆ Iterate to make ends meet.
- ◆ After timing finally closes, many gates will be too big:
 - ▲ waste of area
 - ▲ waste of power

- ◆ Delay fixed
- ◆ Cell Area unknown
- ◆ Sum of areas determines chip size. (Additive)
- ◆ No iterations required
- ◆ Each gate has exactly the right drive strength
 - ▲ Not too little (fanout violation, timing fails)
 - ▲ Not too much (waste of area)

Summary

- ◆ In physical design it is hard to define ‘optimal’
 - ▲ Modeling at various levels of abstraction is very inaccurate
 - ▲ Modeling of intricate wiring constraints is hard
- ◆ Most problems are NP-hard
- ◆ Rely on heuristics and ‘black magic’
 - ▲ Difficult to control algorithms accurately
- ◆ Physical design spans many levels of abstraction:
 - ▲ From logic down to deepest mask level